If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14^2+b^2=18^2
We move all terms to the left:
14^2+b^2-(18^2)=0
We add all the numbers together, and all the variables
b^2-128=0
a = 1; b = 0; c = -128;
Δ = b2-4ac
Δ = 02-4·1·(-128)
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{2}}{2*1}=\frac{0-16\sqrt{2}}{2} =-\frac{16\sqrt{2}}{2} =-8\sqrt{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{2}}{2*1}=\frac{0+16\sqrt{2}}{2} =\frac{16\sqrt{2}}{2} =8\sqrt{2} $
| 10=-2+3p+3p | | n6+2n=12 | | 19=9+x/11 | | 82=-8+6(-5-4x) | | x+4.6x=1 | | 8(7x+4)=200 | | -10=1+4a-3 | | 2x+2.25=14 | | 0.06(y-4)+0.14y=0.04y-0.6 | | 2+7(4x-3)=131 | | 2•25x+15=9•5x+0•5 | | 24x-7x=7 | | 3u−–5=20 | | 0.7x-1.9=3.4x+2.8 | | 8+4b=5 | | 11=4k+4-1 | | -6(4x-4)=-120 | | 2x+49=4x-2 | | 7(x-2)=7x+17 | | 248=-6(1+5x)+4 | | 3.7x+0.5=26.4 | | –6y=–4y+10 | | 0.06(y-3)+0.18y=0.16y-0.1 | | 5x-8+3x=4x-4=6x | | 8x+3(2x-4)=9x-1 | | -7(-3x-8)-3x=92 | | 6x+2x-3=4×-3 | | f(-2)=10 | | 0.6x+x=0.012 | | 4.8x-2.2=-16.6 | | 2/3x3=15 | | 284=-8(5x-4)+9x |